Problem 1.32

Find a closed-form solution to the following Riccati equations:
(e) $y^{\prime}+y^{2}+(2 x+1) y+1+x+x^{2}=0$.

Solution

The standard procedure for solving Riccati equations is to guess one solution and then to make an additive substitution to transform it to a Bernoulli equation. Observe that $y_{1}=-x$ satisfies the ODE. Hence, we can make the substitution,

$$
y(x)=-x+u(x),
$$

to transform the ODE to one that is easier to solve. Take a derivative of it to find out what y^{\prime} is in terms of the new variable.

$$
\frac{d y}{d x}=-1+\frac{d u}{d x}
$$

Plug these expressions into the Riccati equation.

$$
-1+\frac{d u}{d x}+(-x+u)^{2}+(2 x+1)(-x+u)+1+x+x^{2}=0
$$

Expand the left side.

$$
-1+\frac{d u}{d x}+x^{2}+u^{2}-2 x u-2 x^{2}+2 x u-x+u+1+x+x^{2}=0
$$

Combine like-terms.

$$
\frac{d u}{d x}+u^{2}+u=0
$$

This is a Bernoulli equation, which has a routine method of solution. Bring u^{2} to the right side.

$$
\frac{d u}{d x}+u=-u^{2}
$$

Divide both sides by u^{2}.

$$
u^{-2} \frac{d u}{d x}+u^{-1}=-1
$$

Make the substitution,

$$
w=u^{-1}
$$

Take a derivative of this to find out what u^{\prime} is in terms of the new variable.

$$
\frac{d w}{d x}=-u^{-2} \frac{d u}{d x} \quad \rightarrow \quad-\frac{d w}{d x}=u^{-2} \frac{d u}{d x}
$$

Make these substitutions into the Bernoulli equation.

$$
-\frac{d w}{d x}+w=-1
$$

This is a first-order inhomogeneous ODE, which can be solved with an integrating factor I. Multiply both sides by -1 first to get it into standard form.

$$
\frac{d w}{d x}-w=1
$$

The integrating factor is this.

$$
I=e^{\int^{x}(-1) d s}=e^{-x}
$$

Multiply both sides of the equation by I.

$$
e^{-x} \frac{d w}{d x}-e^{-x} w=e^{-x}
$$

The ODE is now exact, and the left side can be written as $d / d x(I w)$ as a result of the product rule.

$$
\frac{d}{d x}\left(e^{-x} w\right)=e^{-x}
$$

Integrate both sides with respect to x.

$$
e^{-x} w=-e^{-x}+C
$$

Multiply both sides by e^{x}.

$$
w(x)=-1+C e^{x}
$$

Now that w is solved for, change back to u.

$$
\frac{1}{u}=-1+C e^{x}
$$

Invert both sides.

$$
u(x)=\frac{1}{-1+C e^{x}}
$$

Now that u is solved for, change back to the original variable y.

$$
y+x=\frac{1}{-1+C e^{x}}
$$

Subtract x from both sides to solve for y. Therefore, we have

$$
y(x)=-x+\frac{1}{-1+C e^{x}}
$$

for the general solution to the Riccati equation.

